Calculus & Analysis Symbols with Examples

Symbol	Symbol Name 🗪	Symbol Meaning 😌	Example 😌
$\lim_{x \to x0} f(x)$	limit	limit value of a function	$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$
ε	epsilon	represents a very small number, near zero	$\varepsilon \to 0$
e	e constant/ Euler's number	<i>e</i> = 2.718281828	$e = \lim (1+1/x)^x, x \to \infty$
<i>y</i> '	derivative	derivative - Lagrange's notation	$(3x^3)' = 9x^2$
y "	second derivative	derivative of derivative	$(3x^3)''=18x$
$y^{(n)}$	nth derivative	n times derivation	$(3x^3)^{(3)} = 18$
$\frac{dy}{dx}$	derivative	derivative - Leibniz's notation	$d(3x^3)/dx = 9x^2$
$\frac{d^2y}{dx^2}$	second derivative	derivative of derivative	$d^2(3x^3)/dx^2 = 18x$
$\frac{d^n y}{dx^n}$	nth derivative	n times derivation	$y_n = \frac{d^n y}{dx^n} = (-1)^{n-1} \cdot \frac{(n-1)! a^n}{(ax+b)^n}$
ý	time derivative	derivative by time - Newton's notation	$\dot{y} \equiv \frac{dy}{dt} = \frac{d}{dt} \Big(f(t) \Big) = D_t y = f'(t) = y'_t$
ÿ	time second derivative	derivative of derivative	$\bar{y} = \frac{d^2y}{dt^2} - \frac{d}{dt}\left(\frac{dy}{dt}\right) = \frac{d}{dt}\left(\bar{y}\right) = \frac{d}{dt}\left(f'(t)\right) = D_t^2y = f''(t) = y_t''$
$D_{\chi}y$	derivative	derivative - Euler's notation	$D_x y$ for the first derivative
$D_x^2 y$	second derivative	derivative of derivative	$D_x^2 y$ for the second derivative
$\frac{\partial f(x,y)}{\partial x}$	partial derivative	partial derivative	$\partial(x^2+y^2)/\partial x=2x$
l	integral	opposite to derivation	$\int x^{0.5} dx = x^{1.5}/1.5 + C$
n	double integral	integration of function of 2 variables	$\int_0^1 \left(\int_0^2 x y^2 dx \right) dy = \int_0^1 \left(\frac{x^2}{2} y^2 \Big _{x=0}^{x=2} \right) dy$

Symbol 🕏	Symbol Name	Symbol Meaning 🗪 Ex	ample 🕏
m	triple integral	integration of function of 3 variable	S $\iiint_W dV = \int_{-1/\sqrt{2}}^{1/\sqrt{2}} \int_{-\sqrt{1/2-x^2}}^{\sqrt{1/2-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{1-x^2-y^2}} dz dy dx$
∮	closed contour / line integral	closed contour / line integral	$\int_{C} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{e^{\alpha}} i e^{\alpha} dt = i \int_{0}^{2\pi} 1 dt = t _{0}^{2\pi} i = (2\pi - 0)i = 2\pi i$
∯	closed surface integral	closed surface integral	
∰	closed volume integral	closed volume integral	
[a,b]	closed interval	closed interval	$[a,b] = \{x \mid a \le x \le b\}$
(a,b)	open interval	open interval	$(a,b) = \{x \mid a < x < b\}$
i	imaginary unit	$i \equiv \sqrt{-1}$	z = 3 + 2i
z*	complex conjugate	$z = a + bi \rightarrow z^* = a - bi$	$z^* = 3 + 2i$
\bar{z}	complex conjugate	$z = a+bi \rightarrow \overline{z} = a-bi$	$\overline{z} = 3 + 2i$
∇	nabla / del	gradient / divergence operator	$\nabla f(x,y,z)$
\overrightarrow{x}	vector	vector	$\vec{u} \cdot \vec{w} = xx' + yy' = 2 \times 1 + 1 \times 3 = 2 + 3 = 5$
\widehat{x}	unit vector	unit vector	$\ \mathbf{w}\ = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = \sqrt{1} = 1$
x * y	convolution	convolution	$y(t) = x(t)^* h(t)$
\mathcal{L}	Laplace transform	Laplace transform	$F(s) = \mathcal{L}\{f(t)\}$
\mathcal{F}	Fourier transform	Fourier transform	$X(\omega) = \mathcal{F}\{f(t)\}$
δ	delta function	delta function	$\delta_{\alpha}(x) = \frac{1}{\pi x} \sin(\alpha x)$
∞	lemniscate	infinity symbol	$\left(c - \sqrt{x^2 + y^2}\right)^2 + z^2 = a^2$